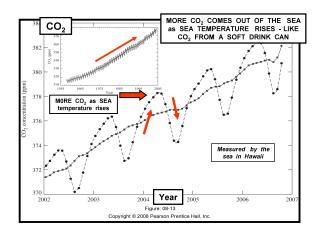
CLIMATE CHANGE 5

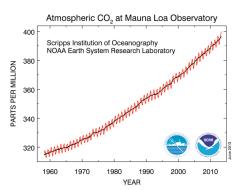
ISOLATING CARBON DIOXIDE and CARBON EMISSIONS WITHOUT CONSIDERING WATER VAPOUR/CLOUDS SIMULTANEOUSLY MUST BE INVALID

ANYONE who considers CO₂ without SIMULTANEOUSLY considering water-water vapour-clouds <u>must be inherently wrong</u>. CO₂ does not exist in isolation in the atmosphere! Water vapour is always there at the same time.

- The *major* greenhouse gas WATER is about 20 times larger percentage-wise than other greenhouse gases (CO₂, CH₄, and N₂O) [Depends on the humidity]
- Not ALL CO₂ is man made (anthropogenic) [Certainly <20% is man made]
- Water-water vapour-clouds dominate
- Clouds as structured and aggregated water (and ice) molecules are visibly real, and are often barriers to light/radiant energy (although they may be translucent).
 Gaseous CO₂ does *not* aggregate, and does not form visible 'cloud-like structures'
- Water can <u>phase change</u> (liquid-gas-liquid) CO₂ does not phase-change in our atmosphere
- Water liquid-gas-liquid phase changes (evaporation and condensation) incur LARGE energy transfer levels; both at sea and cloud level. This does NOT occur with CO₂ – a factor often missed in radiation-only considerations!
- Water absorbs infrared energy in the same band widths (or frequencies) as CO₂, but also absorbs/re-radiates at many more frequencies (often overlooked) [See below]
- Doubling the CO₂ from say 100ppm to 200ppm does *not* double the temperature rise (non-linear)

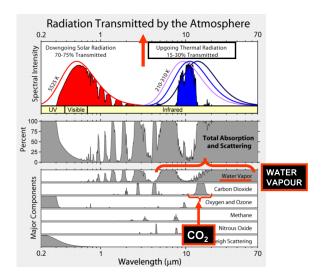
 CO_2 and water vapour *ALWAYS* **coexist** in the atmosphere! So *IF* CO_2 increases, and IF a temperature rise results, the flow on effect will be for <u>more</u> evaporation of water to occur, more water in the atmosphere, and thus a strong 'competitor' for infrared absorption for CO_2 . But more than that -- CO_2 and water *are interactive!!* While CO_2 is 'taken up' <u>only</u> with radiant energy transfer (water vapour and clouds can do that also), the cloud cover and phase changes are *ADDITIONAL* and highly significant. When a cloud passes on a hot day we feel immediately cooler because clouds are 'solid-like' and form an IR 'barrier'. When a few gaseous CO_2 molecules pass we know no difference because there are no ' CO_2 clouds'.


The simple point is this:


IF the greenhouse gas WATER dominates in the atmosphere being about 20 times greater in concentration than CO_2 , and if most of the CO_2 in the atmosphere is *naturally* formed, why target CO_2 as the *main* culprit of Climate Change. Most combustion processes produce fine airborne particulates and/or traces of other compounds (sulphur, phosphorus compounds for example). Singling out CO_2 over incomplete combustion processes (forest burn-offs, volcanoes, some coal-burning power plants) is totally unjustified.

<u>A BASIC question is</u>: Does CO_2 cause the temperature to rise, or does the heating of the ocean cause the CO_2 concentration to rise?

Carbonated drinks consist of CO_2 under pressure. Release the pressure and CO_2 escapes. Leave the can or bottle open and it goes 'flat'. The solubility of CO_2 is both pressure and temperature dependent! So we would expect that as the ocean


surface heats up (say at the tropics) more CO_2 would be released, and as the sea cools more CO_2 will be absorbed. This is exactly what happens. The major CO_2 measuring station is in Hawaii and this cyclical change is clearly observed *[See graph below]*. But this is only a seasonal ocean *SURFACE* phenomenon – as over 70% of the world's CO_2 is stored in the ocean depths, with little mixing with the ocean surface layer. Of course in the deeper parts of the sea, the CO_2 can also be in liquid form under pressure. Over 80% of the active volcanoes are subterranean and many of these spew out liquid CO_2 and methane. So we are unwise to attack man-made processes without considering other sources. A real question here is why measure CO_2 on a tropical island surrounded by the largest oceans with the high surface temperatures? It appears not a wise choice, and may be better to measure CO_2 on a continent.

Of course CO_2 absorbs and reradiates infrared IR energy at certain wavelengths or frequencies -- but so does WATER --- but WATER is <u>more</u> effective over a wider range of wavelengths and even competes with CO_2 .

[The Earth's radiant IR emissions are in the 5 to $60\mu m$ band. CO_2 is active in the 14-16 μm range and at a wavelength of $4.2\mu m$. Water has a far broader operating band as shown in the diagram below. This shows that CO_2 is not as significant as commonly propounded]

Professor Emeritus Geoffrey G Duffy DEng, PhD, BSc, ASTC Dip., FRS NZ, FIChemE, CEng